Radical-Based Regioselective C-H Functionalization of Electron-Deficient Heteroarenes: Scope, Tunability, and Predictability

O'Hara, F.; Blackmond, D.G.; Baran, P.S. J. Am. Chem. Soc. 2013, 135, 12122.

Evan Carder
Wipf Group Current Literature
24 August 2013

Trifluoromethylation and Pharmaceuticals

- Medicinal chemists face major challenges converting drug candidates into viable pharmaceutics^[1].
- Pharmacologically active compounds can have poor structural characteristics that adversely influences its metabolism and excretion^[2].
- Trifluoromethylation is commonly employed to rationally protect labile positions against cytochrome P450 oxidation^[3].

[1] S. Purser et al. *Chem. Soc. Rev.* **2008**, 37, 320.

[2] W.K. Hagmann et al. J. Med. Chem. **2008**, 51, 4359.

[3] K. Muller et al. *Science*, **2007**, 317,1881.

Examples Currently Available in the Market

Celebrex Arthritis, Pfizer

ProzacDepression, Eli Lilly

Monsanto Herbicide

Programmed Trifluoromethylation

$R = \frac{Y}{V} \times \frac{\text{Transition metal}}{\text{Catalysis}} \times \frac{CF_3}{V} \times \frac{V}{V} = CI, I, B(OH)_2$

Ye, Y.; Sanford, M.S. J. Am. Chem. Soc. 2012, 134, 9034.

H. Morimoto et al. Angew. Chem. Int. Ed. 2011, 50, 3793.

Innate Trifluoromethylation

Nagib, D.A.; MacMillian, D. Nature 2011, 480, 224.

Ji et al. *PNAS*, **2011**, 108, 14411.

Value in Exploiting Innate Reactivity

- Incorporates electrophilic radicals at potentially metabolically labile positions.
- Reduces the need for prefunctionalization and allows late-stage trifluoromethylation of diverse arenes and heteroarenes.
- Potentially predictable regioselectivity and tunable regiocontrol, which offers divergent synthetic strategies.
- Allows substitution on various π deficient heteroarenes pyridines,
 pyrimidines, pyradazines, and pyrazines.

28% nevirapine 45 anti-retroviral drug

Objective

 Establish trends that allow for practical predictions in regioselectivity of radical functionalization of heteroarenes

B. Influence of solvent: e.g. Minisci, 1974 (ref. 11)

C. Influence of functional groups: e.g. Minisci, 1986 (ref. 13)

D. Influence of nature of radical: e.g. Minisci, 1974 (ref. 11)

Mechanism of Heteroarene Functionalization using Alkylsulfinate-Derived Radicals

Ji et al. PNAS, **2011**, 108, 14411.

Regioselectivity is influenced by three major factors:

- i. Innate reactivity of the parent heterocycle
- ii. Conjugate activity of π -conjugating electron withdrawing groups
- iii. Electron properties of the radical

Innate Reactivity and Tunability

A. Innate reactivity: activated at inherently reactive positions of parent heterocycle

innate reactivity at α and γ positions

influence dependent on overall electron density reactivity accentuated by H+

electron rich

increasingly reactive with nucleophilic radicals

B. Conjugate reactivity: activated at positions in conjugation with a π -EWG

conjugate reactivity ortho-para to π-EWG

influence dependent on solvent

C. Radical electrophilicity and nucleophilicity: reactivity at δ^+ and δ^- sites

σ-withdrawing π -donor

 δ^- at C3 reacts with electrophilic

radicals at C3

σ-withdrawing

non-polar at C3 unreactive at C3 π -withdrawing

 δ^+ at C3

reacts with nucleophilic radicals at C3

A. Influence of acid and solvent on C2:C3 ratio

B. Reduced sensitivity of C2:C3 ratio to solvent change for CF₃ radical

(i) i-Pr radical: nucleophilic

(ii) CF₃-radical: less nucleophilic, can behave as electrophile

Application in Biologically Available Compounds

diflufenican **49**^a herbicide

heterocycle electrophilic arenes poorly nucleophilic

CF₃ behaves as nucleophile

35% trimethoprim **50**^b antibiotic

heterocycle poorly electrophilic arene nucleophilic

CF₃ behaves as electrophile

Conclusion

- This paper provides an empirical model to predict regioselectivity of radical functionalization in diverse heterocycles.
- Proposes solvent mediated regiochemical control
- Guidelines were shown to have application in biologically relevant compounds, which may influence future efforts on radical-mediated functionalization of pharmaceuticals.